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ABSTRACT

We investigate the propagation of waves through a relativistically outflowing electron-positron plasma in a
very strong dipolar magnetic field, conditions expected in pulsar magnetospheres. We derive Hamilton's equa-
tions for the propagation of rays through a plasma which is inhomogeneous in density; magnetic field direc-
tion, and Lorentz factor. We numerically and analytically solve these equations for rays propagating through
the plasmas outflowing along the “open™ dipolar field lines in which the density decreases inversely as the
radius cubed and in the case where gradients transverse to the radial direction exist. In the radial case we
determine the effects of refraction on pulse profiles, spectrum, and polarization, and indicate the effects of a
transverse gradient. We examine models in which the observed broad bandwidth in the radioc emission has its
origin in a radivs to frequency map. We also study models with broad-band emission at a single radius, We
compare these to observations of pulse width and pulse component separation as a function of frequency. The
origin of “ orthogonal modes” is discussed.

Subject headings: hydromagnetics — polarization — pulsars — radiation mechanisms

I. INTRODUCTION

The development of models of pulsar magnetospheres containing dense, relativistic plasmas (Sturrock 1970, 1971; Ruderman and
Sutherland 1975, hereafter RS; Cheng and Ruderman 1977, 1980; Arons and Scharlemann 1979, hereafter AS; Arons 1979, 1981,
19834, b) has led a number of authors to consider the properties of wave propagation through such plasmas, For example, in a series
of papers by Lerche and Lee (see, e.g., Lee and Lerche 1975, and references therein) ray paths and polarization characteristics were
studied for a variety of geometries in which a large gradient in velocity was assumed. Although not directly related to polar cap
models of pulsars, they pointed out the large effect that shearing relativistic plasmas can have on an incident radiation beam,
Harding and Tademarn (1981, and references therein) investipated the effects of a shearing plasma on a pulse of radiation passing
perpendicular to the direction of shear and found time-dependent modulation similar to observed microstructure (see, e.g., Cordes
1979).

The observation (see, e.g., Backer, Rankin, and Campbell 1976; Stinebring et al. 1984a, b, and references therein) that the
polarization position angle at each pulse longitude is most likely to occur at two preferred values separated by ~90° (so-called
orthogonal modes) has also spurred investigation into propagation effects. Melrose and Stoneham (1977) and Melrose (1979)
proposed that refraction can spatially separate beams with two different polarization states in the low-density limit and thus
account for orthogonal modes. Blandford and Scharlemann (1976) invoke preferential Thomson scattering of one polarization state
due to the anisotropic cross section in the intense magnetic field. Cheng and Ruderman {1979) propose two different emission
mechanisms, “longitudinal emission ™ and curvature emission, together with the “combing ™ effect of the magnetic field (* adiabatic
walking ") to explain orthogonal modes. )

In the accompanying paper {(Arons and Barnard 1986, hereafter Paper I) we derived and evaluated in several regimes the
dispersion relation for wave propagation in a relativistic plasma, in a superstrong magnetic field. In this paper we investigate the
refraction of waves in these plasmas, using the results of Paper I, and generalize the work of Melrose and Stoneham (1977) into
higher density regimes. We carry out detailed ray tracings through model pulsar magnetospheres, in order to make contact with
observational data.

In § IT we use the infinite magnetic field approximation of Paper I to find Hamilton's equations for wave trajectories. In § TIT we
solve the ray equations for a number of simple but illustrative models of the density and momentum distribution of the outflowing
plasma and some simple assumptions about the emission mechanism, calculating the consequences of these assumptions on pulse
profiles and polarization. In § IV we discuss how some features of radio pulsar morphology may be related to refraction, apd
compare our simple hypotheses about the emission mechanism and plasma distribution with the observations. In § V we summarize
these results and suggest some observational tests of our theory.

! Research Associute of the National Research Council.
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II. HAMILTON'S EQUATIONS

In the pulsar models we are considering, the scale lengths in the radial direction are on the order of the radius of emission ~ 10*
cm, and in the transverse direction, relevant length scales are the width of the open flux tube ~107 cm, the thickness of the “slot
gap™is ~ 10°% cm (as in Arons 1983a), and the width of the boundary layer between the slot gap and the pair plasma, ~10* cm, all
scales which are much longer than the typical wavelength of the observed radio waves {~1-10% cm). Thus, in calculating the
trajectories of wave packets the “slowly varying " or Eikonal approximation can be used (Weinberg 1962; Bekefi 1966) in which the
wave properties are determined by the local plasma properties, but with the rate of change of the position, momentum, and
frequency of the wave packet determined by the spatial, temporal, and wave vector gradients of the local dispersion relation. Thus if
the dispersion relation is given by D{w, k, x, t} = 0, then the coordinates of a wave packet (in x, k, @ space) changg in time according
to

dx  —aDjk 1
i~ aDjdm (1)
dk  8Djax

-—= ) (2)
dt. ~ aD/ew ,

dw —aDjor .

.~ Djaw | ' @)

Here ¢, is the time elapsed since the creation of a wave packet measured in the laboratory frame. If the dispersion relation is
independent of time, then the frequency is a constant, 0 = w — w{k, ¥} = D, so that

dx  odw .

el 4
dr, ok k. x) . )
dk —dm -
—_— = —— ] . (3)
de, dx (. )

In equations (4) and (5) wix, k) is given by the dispersion relation.

As discussed in Paper I, under the conditions of polar flow of pulsar emission zones, the radiation propagates in two independent
normal modes. These are the ordinary, or O-mode, with linearly polarized electric field in the plane of k and B, and the extraordi-
nary, or X-mode, with linearly polarized electric field perpendicular to the (k, B)-plane. In most regions of the polar flow, it is safe to
assume the cyclotron frequencies vastly exceeds the Doppler-shifted frequencies of the waves. Then the refractive effects are
adequately modeled by using dispersion relations derived as if the magnetic field were infinite. The X-mode propagates as if in a
vacuum, with @® = ¢2k?. In the O polarization, w and k are connected by the dispersion relation from Paper I:

Dy = (w* — clkﬁ)(l — ): z—’; gs) ~ ekl =0, ‘ (1.45)
with .
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Here f; is the distribution function of species s, 1y is the momentum of a particle moving along B as measured in units of my¢,

ny = cky/w, k is the component of & along B,y = (1 -+ uj)"/? and f§;; = 1 /7 is the speed along B. When the O-mode is subluminous

(ny > 1), the integral in equation (1.46) is done in the principal value sense. :
Differentiating with respect to x and k& yields
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We used the fact that




140 : BARNARD AND ARONS Vol. 302
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Equations (4) and (5) together with equations {6)-(10) are the first-order, nonlinear, coupled ordinary differential equations which
describe the ray trajectories in a time-steady medium. The assumption of time independence of the plasma parameters (actually time
independence in the corotating frame of the neutron star) is consistent with the time-steady models of pair formation (see, e.g,, AS;
Arons 1981, 1983a). This assumption is also consistent with “sparking™ models (see, e.g., RS or Cheng and Ruderman 1980) when
the fluctuations in density and other parameters due to the time-dependent behavior of the sparks is small. This can occur since
many sparks will contribute to the density at any one place. :

To evaluate equations (6) and (7) it is necessary to calculate ) , wag./ény, Y, g,0w?/dx, and ), w7dg,/dx. We have done this for
the cold plasma and hot waterbag distributions which we list in Appendix A. '

Insertion of the top halves of equations (A1)}-(A3) into equations (6) and (7) yields the ray equations for a cold plasma:

1dx

Ed_n;:p""qb’ (11)
1 dk &b - n) gin N 7] glny,

R L LA 12
war, % x|, s _“(3’ Boyi) ox (12)

Herez = 02/(p*w?), p = (1 — uy fo)*/d, g = alny — Bo}/d, 1 = (1 — ML — fony)/(2d), and d =(1 — ny Bof® — wnyfny — fo).

Since dx/dt is expressed in terms of the parallel component of n, it is useful to write the time derivative of & (or n) in terms of the
components parallel and perpendicular to the magnetic field:

dng, din-B dn ob dx
gy 9% .. B i
dt, de, de, btn (ax dtr) ’ (13
and
dn, d dn dh dx
=— . =g, — — 1. 4
i i, flrx b)-e,] =e, [dtr xb-+nx (&x L, (14)

Here e, is the unit vector in the direction of the magnetic azimuth and 96/0x is the matrix in which the ifth component is db;/dx,.
Equation (14) applies only to rays which liein a plane of constant azimuth.
In the limit @ < (1 + folyo @, (ie., the slow branch of the O-mode or ¢ 3 1) the dispersion relation reduces to

w=ck), (13}

and equation (11} becomes
1 dx
——=b.
e dt, (18)

If the plasma is uniform in density and Lorentz factor y,, equation {12) becomes

1 dk &(k-n)
- =, 17
w dt, ox 1
If the magnetic field is circular with radius of curvature, p, then equations {13) and (14) become
dhy g, _cky (18)
dt, dt, P

Thus eqt.lat.ion (16) implies the group velocity vector is aligned with the magnetic field, and so the wave packet simply follows the % _
field. This is a consequence of the plasma's ability to short out most of the electric field parallel to the magnetic field, so that ™% .
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. .:conservation of Poynting flux ensures that the light wave (propagating only through displacement current) propagates along the
- p field. In contrast, the & vector, for small path lengths, at least, remains fixed in space. That is, for a wave which is emitted along the

feld at time ¢ = 0, at time t, it will have developed a perpendicular component ity = ckyg ty/p. The group velocity vector will have
been deflected by an angle ~=cty/p. Thus, & remains fixed, approximately compensating for the changing direction of dx/dr. Thisis a
consequence of the fact the field is curved and the phase velocity of the waves is essentially c. If the planes of constant phase are
initially perpendicular to the field, the phase of the waves at larger distance from the center of curvature of the magnetic field will lag
behind those that are close to the center of curvature. Consequently, the plane of constant phase gets more and more oblique to the
feld as the wave progresses, indicating a larger and larger value of k.

In the opposite limit, @ » (1 + fo)yo @}, (B — ny)| <€ |(1 — B m)*|, and the group velocity vector can be approximately
written

1 d_x _ [1 _ aﬁ"(ﬁn - H")jl" + ﬂ(ﬁn - H") b {19)

cdt, |77 (U= fom) L (1= Pony)?

The angle Afi, between the group velocity vectors of an X-mode and an O-mode wave with identical &, {(with the assumption that
n = 1),1s given by
' sin 8,(f, — cos §
Ang = il = h(ﬁﬂ 3h) . (20)
vaw® (L — Bg cos 6,)
Here 8, is the angle between the magnetic field and k. Equation (20) is identical to equations {25) and (20} in Melrose (1979).
Evaluation of equation (20) at its maximum 8, = 1/[2Y%(1 + fg)yo] yields a maximum Afl, = 0.9y, ;}/w®. The physics of the
separation of the O- and X-modes through the magnetosphere, however, depends on the gradients in the plasma parameters (i.e., b,
N, 7,) which leads to angles quite different than are given above, particularly in the high-density regime.

M. APPLICATION TO IDEALIZED MAGNETOSPHERES

The final direction a wave packet takes as it leaves the magnetosphere is determined by the global distribution of the energy and
density of the outflowing plasma and the direction and strength of the magnetic field. In addition, the stellar rotation introduces
aberration and time delays, causing the angular separation of two different rays Afl, emitted at radial separation Ar of Ay ~ ArQ/c
(Cordes 1978). We assume the neutron star is not rotating for the purposes of calculating the eflects of refraction, which is
appropriate if Afl, is much less than the angular change in ray direction due to refraction.

As a model of the outflowing plasma, we adopt “ typical ™ electron zone pulsar parameters. A relativistic electron beam {density of
~[QB/2rce][R,/r1? = 10'*[R,/r]* em™? and Lorentz factor y, = 10°) is accelerated from the stellar surface. The beam emits
curvature radiation producing an electron-positron plasma, which is further enhanced in density by the conversion of the synchro-
tron radiation of the electron-positron plasma into more pairs, yielding a total density enhancement of 10%-10° (RS; AS; Arons
1983a, b) over the original beam, and average Lorentz factor of ~10-1000. Although the exact distribution along field lines is a
function of the low-altitude (r < 10R,) magnetic field geometry which may depart significantly from a purely dipole field (see, e.g.,
Barnard and Arons (1982), if the rotation frequency and field strength are significantly above pair creation threshold, the bulk of the
plasma will have a density which is roughly independent of 8, the magnetic colatitude of the field lines at the stellar surface.
However, as the outer boundary of the polar flux tube is approached, the potential in the corotating frame approaches the surface
potential, greatly reducing the acceleration of the beam particles. The produces a “slot gap™ (AS; Arons 1981, 1983a) on the
boundary of the pair plasma. The gradients in piasma density and energy can be very large in this region where they are nearly
transverse to the magnetic field, although extending over only a fraction of the width of the polar flux tube. In the radial direction,
the plasma streams along the field lines. Conservation of particles and magnetic flux implies a number density proportional to
magnetic field strength, which for a predominantly dipole field yields the r~? dependence previously stated. We examine models
with and without the transverse gradients in order {o isolate the effect of the slot gap on final wave trajectories.

We also examine the assumption of broad-band emission at one altitude, emitted parallel to {the magnetic field. This is in contrast
to the radius-to-frequency mapping assumption which is commonly made (RS; Cordes 1978). Physically, if at a particular altitude,
the emission occurs at ' = @), in the rest frame, in the laboratory frame this emission is observed from @ =~ w)/yp to @ & 2pg0x, on
the superluminous branch of the 0-mode. Further, if the radio emission results from the plasma instability associated with shear in
the narrow transition region between the slot gap and the bulk of the pair plasma (see Arons 1983a), in which a range of plasma
enetgy, density, and plasma frequency is present, the unstable plasma modes will be effectively broad band as they propagate into
the column of the pair plasma.

a) Radial Density Gradient
i) Ray Trajectories
We consider a magnetic dipole aligned along the z-axis. In the (y-z)-plane, the y- and z-components of the field are given by

3 R\ =z R\3 3 ?
B,= E Bd(-r—) r—i and B.= Bd(?) [1 - 2{:] . (21)

In general, the density is a function of field line and magnetic field strength: 7
N, = N,o(0,)(B/B,) & N ol JR,/r) {22)
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fdpy) is not a function of position for the present calculations. As indicated by the solution to equation (18), the field line curvature
can increase i, from initially close to zero to of order . Since @ will be less than the pulse width of pulsars (~15%), n, and # can be
treated as small parameters, Evaluating equations (11){14) and retaining terms linear in n,_ and @ yields

s | - “
%% =pn —q ’f . (25)
E :—z = 'g (pry —q) - pny . | _ . 4 (26)

Here we have included aradial density gradient only (N, = constant). These equations can be further simplified by eliminating the
time dependence, i.e. by dividing equations (23) and (26) by equation (25) and using the dispersion relation (46) of Paper I rather
than equation {24) for ny:

=, = 7= 2
dr 4 2 2(pn" — q) ' ("7)
g 8 ", '

Z_Z_ 1 28

g dr 2 n—gfp (28)

Equations (27) and (28) may be solved analytically in three regimes: (1) the Alfvén mode (=subluminous O-mode) at high density
{4y > 1); (2) the fast mode, at high density and small n, (2! » n}/2); and (3) the fast mode (=superluminous 0-mode), at low
density or large n, (2'/* < n3/2). Table 1 lists the approximate expressions for p, g, and ! which are correct through first order inn,
and 8, in the three regimes. Insertion of these expressions into equations (27) and (28) yields (through first order in n, and 6):

dn, 38 3ny

T )
0 L : .
r%=~2-——crni. (30)

Here o =10, 4, 1 for the slow, high-density fast, and low-density fast modés, respectively. For simplicity we are considering rays
confined to one magnetic azimuth. The full three-dimensional problem is found in Appendix B. .
Equations (29) and (30) have parametric solution:

Ug — 1\ g —u_\* (31)
ro \u—u, u—u.}’ :
8 fug—u N\ g N2 o ' (32)
By \u—u, M—t_ ’ - _ -

n, =ul. (33}

Here the parameter u varies from ug to ..., and the constants are uy = nyo/fg; 10, = {1 & [1 — (3u'/4)]”%}/ai and @ = 144 — 3a)'2.
For the cases 0 =0 and 1, 6 and n; can be expressed explicitly as functions of . Note that positive n, is taken to be in the
direction toward the magnetic axis. ‘

~t

TABLE 1
APPROXIMATE VALUES OF PARAMETERS 1N EQUATIONS (27) AND (28)
Slow Made Fast Mode Fust Mode
at High Density ot High Density  at Low Density
Definition At | 1>a@enif2 a'Pegni2zl
of Regime =1 <1 msl

Ul eeeer i nanaes 1 1 —g' 1
F oveiiiraiieiiaaaaans 0 1 1
U 0 3 1
G e, -1 -1 0
It i 0 al?2 0

-—
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F1G. 1.—u, vs. 8 for the solution to the linearized (in n,, 4, and 1 — n)) Humiltons equations (eqs. [32] and [33]). For p = 1,n, reaches a maximum value since §

reaches a muximum (see eq. [64]).

o = 0(Alfvén mode):

0 r\M? 30, { r\** (30 r\ ¥
DT(E) ’ "l=?°(r:) “(T“""m)(a) : B4

o = 1 (fast mode, low-density limit):

03 mw fofmo 1) 30 _no_3(r\(%
8,2 8, Tr\g, 2/ ™mTF "2 T2\ A2 M) (33) .

Note that in equation (34) the wave trajectory is along a magnetic field line, while in equation (35) the wave simply follows straight
unrefracted trajectories with fixed & vectors. For o = £ (fast mode, high density) there is an intermediate trajectory. Noting that the
first term in parentheses in equations (31) and (32) varies from 1 to 1,13 {for ¢ = 3) as u varies from i, tou_, whereas the second term
varies from 1 to oo over the same range, the first term may be regarded as constant = 1. Then the explicit solution is

0 p\{La)za (- myw‘ = 29I

00_—1,l o ’ ‘ Crs) /e = 128
r\(1-ay2e Y\ ~ta+12a N

#, = u_ 80 — — Bolu_ — ug)| — . nee 4 {2 36

L=u_y u( ,D) ol uo)(ro) =B (2 6o

0
X NIQ\)Q (“'l\‘\‘ﬂ'“
Here v, = (g — u ) — uy) = 1, and, for o = 4, ¢ = 0.63 and u_ = 0.42. Equation {36) approaches the exact solution'as o — 0 and
is still quite accurate for o = 4.

We have plotted n, versus # and r versus rf for the three cases in Figures | and 2.

As indicated by equation (34), wave packets on the slow branch at high density tend to follow the field lines, i.e. be “ ducted ” along
the field. This tends to separate O-mode from X-mode spatially since the X-mode propagates as if unaffected by the field or the
plasma, with straight ray paths identical to the fast low-density O-mode as in equation {22). However, as the Alfvén O-mode waves
propagate outward, in the plasma of decreasing density, the wave frequency in the comoving frame approaches the comoving
plasma frequency. As this occurs, the phase velocity of the wave parallel to the magnetic field decreases until it is equal to the
velocity of electrons and positrons in the main body of the distribution function, causing the wave to be severely Landau damped
before it can propagate to infinity (Paper I), Unless there is energy transfer from the slow mode to the fast mode, energy in this wave
mode will not be observed. However, if energy transfer occurs at a frequency of the order of the comoving plasma frequency and it
occurs in a region small compared to the scale over which the comoving plasma frequency varies, then there will be a radius r,,,
below which waves will travel primarily along field lines and above which waves will travel essentially in straight lines in the
direction of the constant & vector. Physical processes, such as wave-wave coupling and linear-gradient coupling which transfer
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FIG, Lt v8. r from eqs. (31) and (32). {Through first order in @ this is identical to y vs. x)} -

energy from one mode to another are currently under investigation by the authors. The angle between the dipole axis and the final
ray direction £, will have frequency dependence proportional to w4 (since e, ~ N3 = [r/ro]~¥? = [8/8g]™ 7). This exactly
mimicks the radius to frequency mapping (see, e.g., RS) since an “emission ™ radius is simply replaced by a * transition ” radius.

If wave energy originates on the fast branch, then the phase velocity is always greater than the particle velocities so that Landau
damping does not occur. Emission directly onto this branch requires an intrinsically nonlinear process. At high densities and small
values of n, the waves are Langmuir-like with superluminous phase velocities. As in the case of the slow mode, planes of constant
phase lie close to planes of constant r since the phase velocity (see eq. [1.70]) depends primarily on r {through «'/?) and only in
second order depends on @ (through n3). Thus a component of & perpendicular to the magnetic field of order kf is generated upon
change of magnetic field direction of order 8. But as k, is increased, the wave becomes more and more eleciromagnetic, and the wave
decouples from the plasma, subsequently following a straight wave trajectory. Prior to this decoupling the Langmuir disturbances
to a large extent are convected with the plasma, since their group velocities in the comoving frame are much less than the plasma
fluid velocity. Since the plasma is constrained to follow the field, to a large extent these waves do also.

We may estimate the final angle &, with respect to the magnetic dipole ¢ that a wave packet takes as it leaves the magnetosphere.
From equation (36), (6/8,) = {r/r)®?, indicating a ray trajectory which curves somewhat more slowly than a magnetic field line. To
understand the evolution of the & vector in a heuristic way it is convenient to consider a plane of constant phase. Assume that k is
initially parallel to 4. Then we may construct a plane of constant wave phase which lies perpendicular to the magnetic field and
passes through ry, 8. Since the phase velocity, through first order in 8, does not depend on the magnetic field direction, lines of
constant phase will propagate in approximately straight lines. But since the magnetic field curves, r, will be of the same order as the
change in angle of the magnetic field as is reflected in equation (36). As n, grows and as 2l? decreases, the wave becomes less and
less Langmuir-like and more and more like a light wave. The transition radius occurs when n} = 2x'? above which the wave
disturbance travels (through first order) in a straight line,

Thus at this refraction-limiting radius (RLR) (indicated by subscript f'}:

2L 2 TLf 37
B, 20, &° @7
where 8 and n ; satisfy
g\ 258 g\ ' .
0= 1.41ay4(5i) p358 0428, — 0'428°(e_f) piet - (38)
) 0,
At large densities, 8 /f, » 1, so that i, == 0.428, yielding

g ~ 1.6605 °2"%307¢ (39)

0
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This power law in frequency occurs until (£ ;/f) = 3/2 which from equation (39) yields a break frequency e, of

Dor 21053y = ATE TN (40)
0

At frequencies above w,,,, the waves are unaffected by the plasma, so that £, is essentially along the direction of the original
fc-vector, which is at an angle of 3/28, from the mmagnetic axis.

In Figures 3 and 4 we plot log &, versus log w/w e, for the solution of equation (37) and {38}, which has asymptotic behavior as in
equations (39) and (40). In addition, we have numerically solved the nonlinear Hamilton's equations (eqs. [6] and [7] for the hot
water bag (Fig. 4) and equations (11) and (12) for the cold plasma (Fig. 3).

Figure 3 shows that the linear solution agrees well with the numerical solution for large values of y,. As y, decreases, however,
1 — 1 becomes comparable to 1/y3. From Paper I, equation (68), we noted that ifn, < 1/y, and w’/w? > 4y}, then equation 67a of
Paper 1 is the appropriate dispersion relation, and equation (70) of Paper I gives the corresponding phase velocity. Since the phase
velocity increases with n,, phase fronts far from the magnetic axis overtake those close to the axis cansing the k vectors to be bent
toward the magnetic axis. Only when 7y, is relatively small so that n, can be relatively large and still be in the regime where
refraction toward the axis takes place, can this occur. For larger y, by the time o falls to below 37, n, is greater than 1/y,, so that a
wave never enters this regime. The linear solution assumed that 1 —ny =~ x'? » Iy2, and so does not apree well with the exact
numerical solution for small y,. In Figure 4, again, for large upper cutoff the linear and numerical solutions agree, but since the
lower cutoff (y,,;, = 10) increases the magnitude of the above effect, the linear solution slightly overestimates the refracted angle and
again becomes inaccurate when y,,, < 10.

Fie. 3—¢, vs. the frequency in units of the plasmu frequency ad ¢ = ry, for a 2 density distribution, and a cold streaming d_istribution function. Dotted lines were
found analytically from eq. (38), while the solid lines represent the numerical integration of the exact nonlinear Hamilton equations.
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Fi6. 4—Same s in Fig. 3, except that a waterbag distribution [unction was used, with 4 minimum cutoff of y,,,,, = 10 and maximum cutoffs as indicated

it} Pulse Profiles

Although the final ray directions give an indication of the broadening of pulse profiles due to refraction, more direct comparison
with radic data requires integration of the emissivity over the entire open flux zone. The equation of radiative transfer in an

anisotropic plasma is given by Bekefi (1966):
dl (nf) Tk owd ()

z
Here I, is the energy passing unit area in unit time and in unit frequency bandwidth per unit solid angle in the direction of the group
velocity vector, B, x, is the opacity, and 4/ is a line element along a ray. The quantity n, is the ray refractive index, which from

Bekefi (1966) is
. 1 dn\?
n= sin Bﬁ[l + (” BB,,)

Far from the pulsar (when n, = 1), the intensity is

Y2{ @ [cos By(n~"dn/50) |, sin 8, )
@ aob [I = (”_ lan/agb)l |m:| 172 . b

_ j AUCY | (43)

bl
n;

.
n; =

m

where the integration is along a ray. We consider siowly rotating pulsars in the sense that angular aberration and time retardation
effects are small compared to subpulse angles and time scales (as in Cordes 1978). Thus it is sufficient to calculate the intensity as a
function of direction, n, with respect to the magnetic axis, and then to consider the rotation of this pattern of intensity in order to
calculate the flux at a fixed point in space.
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7" As a function of direction, n 1, the flux is

Fln,, d)= _[Im(ﬂf, d)dQ =472 JIm(nf, d)dA . (44)

Here dA is an element of area perpendicular to #; near the pulsar, and d is the distance to the observer. Usingdz = B B dl, where
dz is a displacement in the direction n, and f,, is the initial direction of a ray which has final direction By (=ng), the flux can be
written:

Fofny, d)= i’ J JmEr, Byl J1dV ’ @5)
d* | ning - Bng)
where dV is an element of volume.

It is beyond the purpose of this paper to calculate the emissivity either as'a function of position or direction for any hypothetical
emission mechanism. Yet to maintain as general a discussion as possible we allow a power-law distribution of emissivity in r, f,,and
wfw, with upper and lower limits {denated by subscripts * max ™ and “min,” respectively) for each variable. In addition, we assume
that the emissivity is highly beamed along the magnetic field, 5o that

. 5 @ - ar 73 ’
jD 5(@) ( 2 (2) (L) (361: ) - ‘ Pmin < 1 < Frge
SIn & mp Fo seriix if H*min < B* < 9*“.1“

Jolts m £) = | (“’) (m) (m) |
) ﬂ.)p min mp wp mux
0 otherwise {46)

Here (£;, #7;) are the polar angles of the initial unit wave vector »; at the initial position r, having spherical coordinates (ry, 8y, ¢) (see
Fig. 5). Also, @ = 5, — ¢hg. and @ = &, — 30,/2.
Making use of the dipolar geometry and equation (22), the upper expression in equation (46) becomes

. . 5(60 w\*»/ g @\ (ar =302+ Jaw/2)
o= Jos(ay 2O (@ (B Yo . @7
sin &; \wyq e o _

Here wy is the plasma frequency at radius rg.

() e
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\ 70 *Bry
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Fig. 3.—Orientation of various angles and axes. Lefi: dipole moment g is inclined by the angle  from the rotation axis £2, while the line of sight is in the direction »
and is inclined by the angle ¢ from £2. As the pulsar rotates, the rotational phose angle § continually grows. Right: At the position r with spherical coordinates (r, 8,
thy) the group velocity vector §, is designated by the spherical angfes (£, #) in the rolating frame of the pulsar. At the RLR B, must be parallel to # in order to reach
the observer.




148 BARNARD AND ARONS Vol. 302

As indicated in equation (45), the initial direction of the ray is considered a function of the final direction as well as the
coordinates. Thus & = &{&s, 1y, Ha, o) and my = yd&p, 1y, By, do). For the case of a radial density gradient, and for a ray which is
emitted along the field (® = @ = 0) equation (39) is sufficiently accurate in the high-density limit, and & = £, = 36,/2 in the
low-density limit. Thus including the radial dependence of the density explicitly we have (forn, =0):

[ = {%ﬁ}“"a‘”“‘(r/ru)""""‘ forr <ry,

. 8
&, for r > ry “8)

Here m = 0.721, n = —0.210, a = 1.6623°7, and r,, = [(3/2)"(&}™)/a]""ry. The volume element 4V in equation (45) in polar
coordinates is r? sin 0, d, dg, dr. Integration of equation (45), with equation (46) used for the emissivity, over 8, and ¢, yields the

radial integral:
2. r 2 W O 2& T o) ¥ oy R ) -1
Folty d’=5“’°(50) (’J> J ‘”[ i )] (r) ["" oos &= 1| 30, 36, 30 aao} ’ @)

where the integration limits are chosen such that the constraints on equation (46) are met. Here a,, = o, — /2 + 3a,/2 + 2. The
Jacobian in the absolute value sign is evaluated at ©@ = @ = 0, and with £, and 5, held constant. In order to evaluate this Jacobian,
we need to have ray trajectories, which are not emitted parallel to the field nor even constrained to lie in an azimuthal plane. These
solutions are obtained in Appendix B. Since the solution gives the final values of the coordinates and the ray directions as functions
of the initial values, whereas the derivatives in equation (49) are of the initial values of the direction with respect to the initial values
of the coordinates, keeping the fina! values of the direction constant, some algebraic manipulation is required and is outlined in
Appendix C. The result in the high- and low-density limits is

70 3D 00 30

80y Bag gy B0,

e b 0O 20

(50)

U 2u_fu, forr<ry

T3 for r>ry
Since the emissivity is nonzero only along the field direction, #y = nﬁ ~ 1. Because &; and £; are both small, cos (& — ¢} = 1.
Evaluation of the radial integral in equation (45) is straightforward in the two limits in equations {48) and (49) as long as careful
consideration is paid to the integration limits. The result of the radial integration is

0 I;.1.|1:| 1 < Plow 1 and l.u:p 2 < Faw 2

. 2 w\= jord |1 Py =7 andr 5 <r
Fm(qf, rs d) = (___) :{OWO 1 up 1 Tow 1 ‘up bt low 2 . . (51)
3 o) d B:ﬁmux 12 . rl.lp 1< Tiow1 and JIurjz = Plow 2
L+ Fap1 = Tiaw1 and Fupa > Fioy 2
Here
£ 2 az
TR G S O ol I A A T TSN e () o
oty \ ry ry 3,4 3 rg T
where

oy =3 +a, — /2 + 3u,/2 — neg/m, oy = oy — el ,

rup 1= min (rmnx! Tuer P moxo Togemin 1) t rup 2= min (rmnx’ Ty o Ttemin :'.) ]
Fow 1 = Max (rmim Tw mine Fosemax 1) * Mow 2 = MAX (rmln! To mins Feors Togmax z) H]
_ a— . = (& 2
Taen = [(m/mp)ext/(w/mﬂ):lz',aru 3 Pogpext1 = (':J’/gm En)l,'[m+n)ru T’ Fogex12 = (g)(éf/eat cxl)"rl] ’

and the subscript “ext” stands for “max” or “min,” used consistently in the last three expressions. Figure 6 graphically illustrates
these radii in the (r, o)-plane. Calculating the flux in the X-mode is identical to the low-density O-mode calculation (so that r,,
should be replaced by ry,). )

Two particular limiting cases are of interest: (i) broad-band emission in frequency in a narrow range of radius and (i) narrow-
band emission over an extended range in radius,

1. Broad-band emission in frequency, narrow range in radius-——At low frequencies = Iy =Fo + AP, Piow 1 = Fain = Fp @nd the
second integral in equation (51) can be ignored, while at high frequencies, ripw 2 = Tmin = Tos Tup 2 = Fmax = o + Ar and the first
integral is zero so that equation (51) becomes

2 (2 N jorsAr (o \*=(&; aofm ] 0 < Wy,

I\ u, d? \wq a 0% alr i < Cp < aly g
Fm(éf! s d)= ijurﬁAr 2§f ot W > Wy, . [52)
9 ¢ 38 s 32 < & < 30 e/ 2

0 otherwise
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FiG. 6.-~Integration of emissivity in log r — log 8, plane. A schematic representation of the integrution plane in eq. {45) (afier integration over ¢y). Here
m=—0721, n = —0.210, a = 1.6625"". Ench integration occurs with £; and w held constant, with 8, iy Frmasgminy 800 {0/69,) ey cODStant parameters,
depending on the density model and emission mechanism. Heavy dark line indicates the only points where the d-function in eq. (46) is nonzero, and the kimits yield a
contribution only between ry..,,, y 80d Fge, o for this particular choice of parameters.

In this case the pulse width as a function of frequency reflects the frequency dependence of equations (39) and (40), whereas the
dependence of the flux on frequency is determined solely by the frequency dependence of the emission mechanism (i.e., through a,).

2. Narrow-band emission in frequency, large range in radius.—Here use of the first or second term in equation (51) depends on
what is taken to be the narrow emission band. RS and Cheng and Ruderman (1979} assume emission occurs when o = ck and
' ~ w), which requires «'* & 1/(2y%). This borders the regime between p =% and p = 1, so the amount of refraction occurring
depends on how broad band the emission is. For illustration we ignore refraction and let

(@/0)qx = (@/w,). + (Borfo )2 and  (0/6)y, = (0/w,). — (Awjw,)/2,

with (Aw/w,) < (w/w,).. Then ry, = 7y i 80d 7py = T'g, que and equation (51) becomes

E—ﬁ ﬂ ag— 2a2/3 A_w 2 2x2/3 61‘ ap (m/wn)c 1/39 <t < (w/w )c 1/38
Fulpnp, d)=127 d* \wq @, NS/ \yoman wiwg | TN wfwg |

0 otherwise (53)

In this case the pulse width is ~ ™', and the spectrum is independent of the emission spectral index (since it is emitted in a small
frequency band) but instead depends on the spatial emissivity parameters «, and e,. Il the emissivity is proportional to density, then
ay = 0 and &, = —3, so that F, is constant in frequency (since the decrease in density at larger radii is compensated by increase in
volume). The observed spectral index of ~ —1 to —2 must in this case come about from an emissivity which is proportional to a
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lower power of density (j, ~ N** or N' for F,, = w™! or m™7, respectively), or the emissivity must decrease rapidly with increasing
8, (g ~ —3 to —6} to account for the observed spectral index.
ill) Polarization

If propagation in the high-density regime occurs in both the X-mode and O-mode polarizations, the O-mode will be angularly
separaled by large angles ( 2 subpulse widths). Thus the outflowing plasma acts like a polarizing beam splitter in the same way that
was proposed by Melrose and Stoneham in the low-density limit. At high frequencies the X- and O-modes do not separate, and so
the polarization reflects the polarization of the emission region.

The final polarization state of the radio radiation will be determined by the polarization state at the polarization limiting radius
(PLR), ie. the point where Aks =~ 1 (Budden 1961; Melrose and Stoneham 1977; Cheng and Ruderman 1979; Stinebring et al.
1984q, b). Here Ak is the difference in wave vectors between the two polarization states for waves with the same frequency, and s is
the scale length in the variation of the polarization parameters. An O-mode ray which is propagating toward the observer in
direction n, at the PLR will have a polarization angle t given by the angle between the projection of the magnetic field direction
onto the sky b, and some other fiducial direction such as the projection of the rotation axis onto the sky £.:

_ % b xng) A x {2 % ny) 54
*”—L(””Q’)_’"[ Bxnl @ xmn S

50 that
12,% 5] [1—(6-2F—(n- b) ~o QP + 2, Bin - QAL - B
2,5, —(ny - BYnp - 2)

In equations (54) and (55) b is evaluated at the PLR, whereas n, is evaluated at the RLR. (By assumption, a1, is also the direction of
the ray at the PLR since refraction at altitudes higher than the RLR is neglible.) The X-mode position angle is displaced by /2 from
that given in equation {55). When a dipolar magnetic field is used for &, equation (55) becomes

tan i = (38,/2 — d sin )/[36,/2 — (2 — )] . (56}

Here we have maintained only linear terms in the numerator and denominator. Alse, f, and 0, are defined in Appendix B, and 8, «,
and i are the rotational phase angle, the angle between £2 and the line of sight (r;), and the inclination angle between £ and the
magnetic moment g, respectively (see Fig. 5), Note that equation (56) is only correct as long as the rotation of the pulsar can be
neglected. For pulsar rotation periods less than ~0.1 s rotational effects become important in determining the polarization ang]e
(Barnard 1986).

For a ray which is emitted along the magnetic field direction, the magnetic azimuth of the ray is constant along the trajectory, and
it is easy to show (e.g., Fawley 1978) that for each magnetic azimuth, ¢, there is a unique rotational phase angle § for the wave
vector to be parallel to an observers direction which is given by

(55)

tan iy =

tan ¢y = 0,/0, = & sin if{oe ~ i} . (57
Substitution of equation (86) into equation (853) yields a polarization position angle of
tan ¢y = & sin iffw — i) . (58)
The final ray direction of a ray at longitude & is
Er= o~ ) + 5% sin® o] . (59)

Equations (57)-(59) are the approximate expressions of the equations describing ¢y, t, & derived before (see, e.g., Fawley 1978, p.
39, or Manchester and Taylor 1977, p. 215) in the context of the Radhakrishnan and Cooke {1969 ; hereafter RC) magnetic pole
maodel for the emission. So, given a particular orientation of rotation and magnetic axes and at a given pulse longitude, the
polarization angle and emission direction are determined. For emission along the magnetlc field, then, refraction only changes the
initial value of £ for a given &, and thus d, but does not change the polarization angle for a given 4.

Ohbservations by Backer and Rankin (1980) and Stinebring (1982) indicate that at each pulse longitude there is a finite range in the
position angle A, One contribution to this range is the fact that beaming is not a -function along the magnetic field but instead
has a finite emission angle Afl,. The quantity A, is commonly taken to be of order 1/y as it is for single particle emission, but this
may be a function of the plasma instability producing the coherence. Since finite n, at emission yields ray paths which are no longer
confined to one magnetic azimuth, the position angle at a particular pulse longitude will reflect this range in beaming angle as a
range in polarization angle and as a decrease in fractional linear polarization.

We may estimate this effect as follows. Differentiating equation (56), leaving § constant, and evaluating at the PLR (indicated by
subscript p) yields

A =3 cos? Y[AG,, — tan A0, 1/[30,,/2 — (o — i] . | (60)

We wish to calculate A8, , and Afl,, leaving the final ray directions (£, #,) fixed but varying the initial direction and position of the
ray (Bo. By G 1) by amounts of order Af,. For simplicity we calculate Ayr at § = 0 (tan 1y = 0} at which point 8, = 0. Small
displacements in the initial position and direction of a ray yield a change in the location of the RLR:

af a0 a0 69
= X xf xf _\:_I' 61
80, = gt A+ Gt Mo+ 75t Mo+ 5L Al 61)
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where all derivatives are taken at 8y, = 0, and at constant £, and 7. Calculation of the derivatives is involved and is outlined in
Appendix D. The result is

Oy [ty — 1 —038T0, /00 )00y @ < @y
AB,, =L [—L——]AB,,: ~ {—%Aﬂbx( il i (62)

== Boy |_ s - 0> Wy,
Here Af,, is the angle between b and k in the (x-z}-plane. The direction of the ray is fixed at the RLR, but the polarization is fixed at

the PLR. Use of equation (B8) shows that if the radius of the PLR is much greater than that of the RLR (but much less than the light
cylinder radius), then

1.088 W <
Oy = G — 1,00, ={ W o 63
¥ YV f %9”_ W > 0y, (63)
Ignoring factors of order unity equation (89) becomes
Ab Fr 4y ™10A0 o<
Ay m 2 {g.{l ’ o 64)
oy £ TAB, 0 > Wy

If Af, = 1/y 5 0.01 and §, & 10° then Ay ~ 5°. At low frequency this can be several times greater. Refraction will broaden the
dispersion in polarization angle with slightly steeper frequency dependence than it broadens the pulse width. The fractional
polarization will be reduced slightly since the observer will sample a range in position angle. If the rays from different field lines add
incoherently, the fractional polarization will be equal to | I(¥) cos 2(¥ — Wo)d¥/[ I(¥)d¥ =~ 1 — 2A¥?/3, where ¥, is the polariz-
ation angle when perfect beaming along field lines is assumed. Thus for A & 5° the fractional polarization is 89%, which is still
quite high, and so is not a severe constraint.

b) Transverse Density Gradients

It is likely that the plasma density gradient in the open field zone of pulsars is not simply in the radial direction. Observationally,
the occurrence of single and double pulses is consistent with a hollow cone of radiation (Backer 1976) which may also reflect the
density of the emitting plasma, From a theoretical viewpoint, the pair plasma should [all off rapidly near the boundary of the open
flux tube due to the smaller potential drop experienced by the pair-producing primary particles (AS). The presence of transverse
gradients can greatly increase the angular deviation of a refracted ray. With inclusion of the transverse term the linearized equation
(27) becomes

rf’ﬂ._£39011 3y fat 3_BD_BInN . (65)
dr 4 2 pny—gqg\ 2 &8,

If the transverse gradient scale is the width of the open flux tube, then the second term in parentheses in equation (65) is of order
1/83 times the first term in parentheses. For p = % the transverse term is of order «'/*/fl, which, for the high-density fast mode, is
much larger than any other term. Since n, changes more rapidly with radius than before, ' can be larger when n7 = a'/*. Further,
if the density decreases in the direction away from the magnetic pole, dn /dr is less than zero, so that r, can be negative when the
wave decouples. The angle £, is thus much larger than either the original angle of emission or that produced by a radial density
gradient.

In terms of the phase velocity this is easily understood. Since f,, & 1 + a'/* the fronts of constant phase move fastest near the
center of the flux tube and slowest near the edge. Thus r; tends to decrease (although in absolute magnitude, it can be increasing).
This is opposite to the effects of the curving field which tends to increasen, .

To measure quantitatively the effects of the transverse gradients we have used an exponential distribution in 8:

Nyoltlo) = N exp [—(80/6,,)™] . (66)

Here N, is the pair density at the center of the polar flux tube (6 = 0) and r = ro 8, and n,, are constant parameters of the
distribution.

We have plotted the contours of constant density in Figure 7 for the distribution (66) using f,, = 0.08 and »,, = 2, along with the
ray paths for several different frequencies, for two different initial colatitudes #;. As explained above, since the gradient points
inward, & tends to point outward, with the group velocity in the direction halfway between b and u. In Figure 8 we give examples of
&, versus frequency for several values of the initial colatitude 8o, for the same parameters in equation (66). We note thatd log £,/d
log w varies from —0.14 when the ray is traversing essentially a radial gradient (see eq. [39]) to ~ —0.5 for those ray paths in which
a steep transverse gradient is encountered when « is still large,

We may estimate d log &,/d log w for the case of a very strong transverse gradient. In that case, from equation (65) the scale
length for growth of n, is on the order of r8y/x!/%, where 8y is the scale in 8, over which N, varies substantially. This scale length can
be much smaller than the radius r. But growth only occurs when the wave is coupled to the plasma, limiting |n, | to be ~2!2ag/*,
The wave thus almost immediately decouples from the plasma, with a terminal ¢ given by

£y 30,02 + /203 (67)
The corresponding break frequency occurs when the two terms on the right-hand side of equation (67) are set equal:
e = 8EF Iy TR (68)
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o
FiG. 7a
FiG. 7—~Ray pulhs through o trunsverse gradient. {a): Ray paths (solid lines) for seven different frequencies through the denstty distribution of eq. (66) with
8, = 0.08 rad, n, =2, y, = 100 and 8, = 0.16 rad. Ench density contour (dotted line) shows density levels down by a factor of 4. (b): Same ns {a), but with
), = 0.04 rad.

We have plotted equation (67), along with the radial gradient result (39) and with the numerical results of a family of exponential
density distributions with the same central density, and the same density at a common initial colatitude 8, but various#,’s andn,,’s
in Figure 9, to illustrate the effects of increasing the transverse gradient. As can be seen, equation (67) accurately represents the
low-frequency behavior of very strong transverse density gradients and provides an upper limit for most distributions at all
frequencies.

It is apparent, however, that for the steepest gradients, at intermediate frequencies, further refraction can take place. This occurs
because even though equation (67) is initially correct, the curving field lines reduce s, and also allow the rays to penetrate into
large-density regions near the central field line (f; = 0), allowing the rays to recouple to the plasma. Since additional refraction can
take place, equation (67) is an approximate upper limit to &,

IV. OBSERVATIONAL CONSEQUENCES

As indicated in § III the frequency dependence of intensity, pulse shape, and polarization will all be affected in a plasma where
refractive effects are important. Some relevant observations include the following:

1. Malofeev and Malov (1980, hereafter MM) find that pulsar spectra are power laws between v, and v, with spectral index
o, = —1.96 4+ 0.57. The quantity v, is the frequency of maximum intensity which MM find to be roughly correlated with rotation
penod P, going approximately as v, = 108P~%3 Hz; v, is the frequency above which the spectrum is significantly steeper, and
which MM find is also roughly correlated with period: v, & 2.9 x 10°P~%° Hz.

2, The component separation and pulse widths of double components increase with decreasing frequency, with index«,, ~ —0.24
+ 0.07 (Sieber, Reinecke, and Wielebinski 1975). At high frequencies the separation is less dependent on frequency, ,, = 0. £ 0.08.
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The frequency v,, at which the high-frequency power law intersects the low-frequency power law was found by Sieber et al. to be
correlated with v,. The tabulation of the parameters v, and v, by MM, however, seems to weaken the strength of the correlation
found by Sieber et al. Rankin (19834, b} finds that pulsars with single components (both “conal ™ and “core ™) tend to exhibit pulse
widths which decrease with increasing frequency, except that at low frequency “ absorption notches” are observed (i.e., pulse widths
which are narrower than the extrapolation of the high-frequency pulse width vs. frequency curve, first observed by Bartel 1981.)

3. Radhakrishnan and Cooke (1969, hereafter RC) first proposed that the observed swing in polarization position angle is due to
the rotation of the projection of the dipolar magnetic field (or field line curvature vector) onto the sky as the pulsar rotates.
Manchester, Taylor, and Huguenin (1975}, Backer, Rankin, and Campbell (1976), and Backer and Rankin (1980) have shown that in
addition over a substantial fraction of the observed pulse, there is intensity at two polarization angles, displaced by 90°, each
approximately cbeying RC’s continuous swing in position angle. Stinebring et al. (19844, b) have extended Backer and Rankin's
430 MHz results to 800 and 1400 MHz to investigate the frequency dependence of the “ orthogonal moding,” and find qualitatively
the same behavior at higher frequency.

As discussed in § 111, the frequency dependence of pulse width and double pulse separation at low frequency has been explained
before as a radius to frequency mapping (see RS or Komesaroff 1970) with the local plasma frequency decreasing with radius, thus
giving larger pulse separations at lower frequencies. In this view the constancy of separation at v > v,, is then associated with a
minimum emission radius. The emission at frequencies above v, would then reflect the high-frcquency tail of the emission
mechanism at this radius. In contradiction to the basic assumptions of the radius to frequency mapping hypothesis, however, this
requires the emission to be intrinsically broad band, with the plasma frequency appearing as a lower cutoff. Two consequences of
this model are the following:

1. A correlation of v,, with v,: as discussed earlier, Sieber, Reinecke, and Wielebinski (1975) find that v, is correlated with v..
However, when values of v, found by MM are used, the strength of the correlation is weakened.
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Fia. B.—Solid lines: {; vs. the frequency in units of Lhe plasma frequency at 8, = 0, and r = ry, for §; = 0.04, 0.08, 0.16 for the same density purnmeﬂ:'rs_'us Fl_g 7.
Dotted lines: the results using the extreme transverse gradient approximation {eg. [671).

2. Frequency-dependent time delays, due to rotational aberration and longer path lengths at lower altitude (Cordes 1978):
however, Cordes 1978 has found no displacement in the centroids of double component pulsars. Within the context of the radius to
frequency mapping model, this requires the emission radius to be less than ~ 108 e¢m. Rickett and Cordes (1980) used micropulses as
fiducial points and claimed to observe a time delay yielding emission radii of ~ 107 cm in PSR 095008, although the absence of
micropulse widening with decreasing frequency raises questions of the validity of using micropulses as fiducial points. The most
striking argument against radius to frequency mapping, though, occurs in the millisecond pulsar 1937+ 214. Cordes and Stinebring
(1984) find that the time delay not accounted for by interstellar dispersion and scattering between pulses at 0.32 and 1.39 GHz is at
most +6 us, corresponding to a change in radius of +2 km, which is much less than 1 stellar radius or the expected radial change of
~ 30 km if radiation at high frequency occurs all the way down at the stellar surface. Since the frequency dependence of pulse width
is typical for PSR 1937+ 214 {z,, & —0.38), the absence of refraction when time delays for this and other pulsars argues against the
canonical radius to frequency mapping.

An alternative explanation is that broad-band emission occurs in a narrow range in radius, but that refraction broadens
low-frequency pulses. The high-frequency fiattening of pulse separation with frequency is then accounted for by the absence of
refraction when w exceeds w,, (see eqs. [40] and [68]). We may test this hypothesis in the context of pair-creation pelar cap models
by comparing the observed break frequency in double-pulse component separation 0, with that given by equation (40) or (68). Pair
creation models yield pair densities N at the emission radius r, of

QB cosifr\"?
_ s ‘e . 69
N 2mce (R) ' (69)

Here « is the number of pairs formed per primary particle: ~ 10°-10°, The surface field strength, assuming braking due to magnetic
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Fia. 3.—log & vs. log w/a,, for a family of density distributions (eq. [66]) having constant central density and constunt density at 8,, but with steepening gradient,
progressing from A to D, Purameters ure A, 0, = 0.0001, n, = 0.047; B, 0,, = 0.05, n,, = 047; C, 8, = 0.095, n, = 6.37; D, 0, = 0096, n,, = 8.00. Doired lines: the
radial density gradient result (eq. 139]) and the extreme transverse gradient (eq. [67]) result are shown.

dipole radiation, is given by Ostriker and Gunn (1969):
B, ~ 1.0 x 10'3(PP_, ) ?/sini.
Here P_,; = P/107 !5 55"}, and P is measured in seconds.

We assume the field lines on which the emission is maximum intercept the surface at some colatitude 8, that is a fraction . of the
Goldreich-Julian (1969) polar cap opening angle,

(70)

8, =[RQ/)? = 0283, P71, (71)
Since 0,/2 = &, == 30y/2, r,is given by
ro/R = 530PG2/12, . (72)
Combining equations (40) and (69)-(73) yields
' Vo = LOxO53 PTTHPYL, . (73)

Here y = (153 /5,¢7 73> _g/tan P2, v, = v,/10° Hz, 105 = /103, (373> _g = {y~*»/1075, and 8,4 = 6,/10°

In equation (73), z is not directly observable but should be of order unity for pair creation models, and so we see thatv,, = 1 GHz.
We tabulate  and f 2. #/R in Table 2, using the observed values of 8, v,,, P, and P for six of the nine pulsars tabulated in Table 5 of
Sieber, Reinecke, and Wielebinski 1975, (PSR 0834406 and PSR 191921 were not used because of the apparent “absorption
notches ™ in their pulse forms. The component-separation spectra of PSR 1929+ 10 was fitted by Sieber et al. by only one power law,
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TABLE 2

COMPARISON OF OBSERVED AND CALCULATED BREAK FREQUENCY IN
PuLSE COMPONENT SEPARATION VERSUS FREQUENCY RELATION

OusERVED PARAMETERS INFERRED PARAMETERS

PuLsar .

[PSR) oy Vg \'mg G.ﬂ (1] £ P— 15 k4 Vema fﬁc ruf'R
0329 +54...... —(.18 1.1 0.24 095 0. 21 039 0.002 10.3
0525+ 21 ...... —0.21 1,39 0.09 1.19 374 40.1 13.26 0.020 84.7
1133+ 16...... —0.26 097 0.06 0.53 1.19 3.7 0.04 0.0004 5.3
1237-+25...... —0.18 141 011 0.50 .38 0.95 1.48 0,001 179
2020+-28...... —0.20 0.96 0.20 0.93 0.34 1.9 0.00 0.001 4.7
2045~186...... —0.15 1.5 <0.40 1.01 1.96 1.0 281 0.002 3240

Notn—Here x,, is the low-frequency power-law index, v,4 = v,/10% Hz, ¥, = v,/ 10° Hz 8,0 = 0,/10°, #
is the peried in seconds, P, s = P07 887 vyq = vo./10° Hz, and z is given by

1= (h‘afﬁgﬁ"a)-s/mn HY2 = 10w, 030 PIPTIE,

with 1y = %/10% and ¢y~3) _ = {y"*3/107". The quantilies a,,, ¥ys: and 0,,, are from Sieber, Reinecke, and
Wielehinski 1975, P and B _ ,  ure from Manchester and Taylor 1977, V,py is from MM, y Is calculated as above
(see eq. [73]), veus 18 from eg. {73), andff,: r./Risfrom eq. (72).

although the data also appear consistent with v,, ~ 1 GHz) The table indicates that x is roughly of order unity, demonstrating
rough consistency of observations with pair-production models and broad-band, single-aititude emission, and also more generally
the apparent relevance of refraction in the high-density regime.

Also listed in Table 2 are the low-frequency turnover in pulsar spectra v, from MM. These must be greater than the propagation
frequencies at the emission altitude. From equation (58) of Paper I, we have

vcmg = 1.6 X 10—365101’“,9 . (74)

Here Vo 9 = (@ouory/27)/10° Hz. Since v,, is typically a few times 10-100 MHz, whereas equation (74) predicts Yoyre & 1 MHz, we
again have rough consistency of this model with observations.

We also point out that in Table 2 the observed low-frequency power-law index varies from —0.15 to —0.26, which should be
compared to indices of —0.14 to —0.50 for density gradient profiles which are purely radial to extremely transverse; this is in
substantially better agreement with the observations than the single index —0.33 predicted by the simple radius to frequency map.
Radius to frequency maps in plasmas flowing out along polar field lines more complex than dipolar have steeper indices (Barnard
and Arons 1982), which worsens agreement between this narrow-band emission model and the data.

Frequency-dependent time delays would still occur, however, due to the different propagation times through the dispersive
medium. Integration of equation (25) indicates that two different frequencies propagating through a purely radial density gradient
will suffer a time delay At of

At = (AsdHro/c) - (75)
Here Aeb? is the difference in w3 for the two different frequencies.

In a strong transverse gradient the time lag is approximately that given in equation (75), with rp replaced by oo/Vag, which can be
much less than rg. The frequency dependence of At is oc A~ here, whereas for rotational effects it is oc Aep 213, Also low-frequency
waves are observed first with rotational time delays, whereas low-frequency waves are observed last if propagation through the
medium is the origin of the delay. (Field line sweep-back near the light cylinder, however, may also cause the low-frequency waves to
be observed last in the radius to frequency model.) Since Al is at most unity in the broad-band model, consistency with
observations of PSR 1937+ 214 requires gradient scales less than ~ 2 km. This may be consistent with dynamical models (see Arons
1983a).

It should also be pointed out that transverse density gradients may also produce frequency-dependent pulse widths even if all
emission occurs beyond wy,, if the local density is associated with a local frequency. A specific model would be required to determine
whether refraction or the emission itself dominates in producing the frequency dependence of pulse widths.

As pointed out by Melrose and Stoneham {1977) and Melrose (1979), refraction is a candidate for the formation of orthogonal
modes. The occurrence of regions in longitude similar to subpulse widths in which an orthogonal mode is preferred suggests angular
deviations of several degrees. This is larger than can easily be accounted for in the low-density limit, but does occur at high density.

Stinebring et al. (19844, b) ruled out refraction to account for the production of orthogonal modes by appealing to the rough
frequency independence of the orthogonal mading. In four of nine pulsars studied, the orthogonal modes covered approximately the
same range in pulse longitude, while four of nine had a greater extent at 430 MHz than 1404 MHz. However, they asumed that all

the refraction occurs in the low-density limit (n, » /), while we have shown that so long as emission into the G-mode occurs with

n, < ob’*, the frequency dependence of the beam splitting is in much better accord with the observed production of orthogonal
modes. In addition, if the emission process produces both X-mode and O-mode photons, the emergent polarization state depends
on the relative intensity of the two modes, so long as the beam splitting is incomplete. Because the X-polarization is refracted very
little, it would be expected to occur within a fixed pulse longitude range, restricted to relatively central pulse longitudes. Since the
polarization state will be determined by which mode is more intense, the position within the range will vary depending on the ratio

of X- to O-mode radiation, as well as on the frequency dependence of the refractive index. In any case, at frequencies above cwy, the
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polarization state will not be affected by refraction, and any frequency dependence will be that due to the emission region. Since
wy, o¢ 077, polarization flips can occur at frequencies substantially higher than v,,.

Y. CONCLUSION

We have investigated the propagation of waves in an outflowing electron-positron plasma and examined trajectories of waves
through this plasma in three regimes: the Alfvén mode, high-density fast mode, and low-density fast mode (corresponding to ¢ = 0,
%, and 1, respectively). If the emission mechanism generates Alfvén waves, the waves propagate outward along the field lines until the
phase velocity of the waves is of the order of the particle velocities where Landau growth or damping occurs. Propagation to infinity
requires coupling to the fast branch. If this coupling occurs at the comoving plasma frequency, pulse widths should vary as w ™ 3. In
the o = 4 regime, wave trajectories are still bent by the curving field, but upon generation of sufficient n, they decouple and follow
straight rays. For emission on the fast branch in a narrow range in radii and if the plasma density is uniform in magnetic colatitude,
pulse widths vary as w~%"% If there are steep density gradients in @, the pulse widths can vary as rapidly as @™~ "/ The dispersion
in polarization position angle should have slightly steeper frequency dependence than pulse width. At high frequencies in the linear
regime rays are straight, so that £ oc w® if emission occurs at one radius, but £, &~ w~*'? if extended over radius (radius to frequency
mapping). Refraction, however, can account for the high-frequency portion £, = constant and the low-frequency portion £, =
w™ P~ ™ 12 pbserved in pulsars if emission is broad band at ene radius, without the problem of the observed absence of rotational
time delays predicted by the radius to frequency hypothesis. O-mode transitions then are understood to be the result of angular
separation of X-and O-mode waves. The observed frequency dependence of orthogonal moding is crudely consistent with this
hypothesis. In contrast, the 3~ variation of angular separation between the modes expected in the low-density regime is in conflict
with the observations (Stinebring et al. 1984q, b). Because the angular separation and fractional polarization of the modes varies
slowly in our model, observations over a wider range of frequency and nonaxisymmetric modeling are needed to test our theory.
The decrease in fractional polarization at high frequency observed in the average pulsar waveforms is consistent with the merging of
the two beams, However, the observations that individual subpulses are highly but not completely polarized argues for some type of
intrinsic partial polarization of the emission process.

We have only considered a few possible emission scenarios in our treatment of wave propagation through the magnetosphere.
The results are suggestive of important consequences for interpretation of pulsar radio data. The general ray tracing and radiative
transfer equations developed in this work should prove to be useful in future work which predicts more precise magnetospheric
conditions and emission mechanisms.

Helpful conversations with D. Backer, A. Konigl, and §. Kulkarni are gratefully acknowledged.

Our research on this topic was supported by NSF grants AST 79-23243, AST 82-15456, and AST 83-17462, by grant number 85-6
from the Institute of Geophysics and Planetary Physics, and by the taxpayers of California.

APPENDIX A
EVALUATION OF EXPRESSIONS IN EQUATIONS (6) AND (7)

Using the dispersion relations and equations (48) and {55) of Paper L, we find

2850
a -y “cold * plasma
Y w? o5 _ 731 — B , (A1)
P on, .
@2 gL Brums 1) + B 1] waterbag
1 dwl
2 - = *cold™ plasma
Y ow; _ ) 7ol — Bomy)® ox (A2)
T Ox 2 ’ 3
g %uﬂ waterbag
X
w -3 Zn d
—_—r —-——*} “ig “cold " plasma
vall — Bo )y I: to  Bova(l — By ny)] ox P
% 2 _{ a 1 1 a.}’min 1 8‘)’mux ) 1 (A3)
; dx nnms B gmp Umax — Hipin anin dx ﬁmnx ox
i hz{ﬁmuv jlTII) a}’mnx h:(ﬁmim n!i) 57’mrn
+ h(ﬁmnxi n II) - h(ﬁmini i E!) I: Hr::"m ox “ranin ox waterbag

Here g is given by equation (55) of Paper I, i(f, i) = B/(1 — fny), and t s min) = Ymoxtming Braximing




158 BARNARD AND ARONS Vol. 302
APPENDIX B
RAY EQUATIONS IN THREE DIMENSIONS

Equations (11) and (12) are the ray equations for a cold et plasma in the limit e/w], > 1. The components of the unit vector along
the magnetic field b are given through second order in x/z and y/z by

_ bo=@x/z. b=@z, b.=1-@+p. {B1)
Thus, through first order in x/z and y/= the gradient of b is given by

_ 3%
1o -3
b (3 3y :
% (2_) o 1 -2} . (B2)
_x Y
bz z ]
If the density is uniform in 8, but falls off with altitude as r~3, then
a1 " 3lox, h
LELRNRNEL- (B3)

la £x; r

Here x, = x, y, or z. For the Alfvén mode and low-density fast mode I is only second order. For the high-density fast mode
le = u'/?/2, yielding a second-order quantity when x; = x or y.
Thus, through first order, the six ray equations become

ldx 3 (F
cdt_px 19z )

6=
A
&2
It
L]
| —
pa |2
| O A
I
Ble e
Ve
3 b f
SN
—

N Ll
1 d=z ldn, 3
ca T ca
We define
0, =x/z, 8.=y7z, n.=0.—n., n,=0,—n,. (B5)
Eliminating the time dependence and setting p — g = 1, we have

Here i takes on the values x or y. The equations, then, for each Cartesian component are the same as those for the rays when
restricted to an azimuthal plane (see eqgs. [297] and [30]).
The solution is again parametric (with parameters u,and u,}:

i, tge — 14 \E T g — u _\ T2 (B7)
B0 Mo — Us ey — H_ ’
g, gy — 4 \ PR g, — 1 {1=a)f2 (BE)
Bo, u, — Uy u,— U_ ’

z tge — e Y Y tige — -\’ gy — U4\ " g, —u_\°
T=( x ) = _ Yoy ¥ , (B9)
Zg e, — Uy By — U_ Hy — Uy Uy = U

n,=ulb (B1%)

n, =10, ' : (B11)

Here g, = 1, x/00ss Hoy = M1gy/Boys e = (1 & 3a)/p, and a = 1/{4 — 3p)/2, Since the parameters u, and «, must give the same value
of z for a ray trajectory, equation {B9) yields

Cfu U —u U+ u,u (U, — Uy

Here U, = (ug, — t1:)/{ttgx — u_)and U, = (tig, — 11, }{ttg, — 1)

K u (U — Uy +u Uy—u_U; (B12) @.

¢
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The wave propagates outward in the high-density regime until the RLR where ni = 2a*/?, at which point further refraction is of
order 83. Thus at the RLR nj . + n7, & 2u§/*(z0/2)*, s0 that

1+ 1-a 14 1= 3afa -
g2 [Hos = s Mg — u\ ’+ 22 f o = s raug, ~u N7 iz Hox = s U2 g — 1\ T2
=[Txf IS s =0,
Upp — Uy Ugp— U - Uyp— Ity yp— H_ Hop— iy Mop— U_
(B13)

xfs By_f,

Here &g is « evaluated at the emission point. Thus u,, is given implicitly in equation (B13), from which any of the variables §
Zp, 0y oy, OT 1) can be found from equations (B7}-(B11),

APPENDIX C

00 b 80 d0
EVALUATION OF ‘5&3 T 50 o

In order to evaluate the integral in equation (45) we must evaluate the dedvatives of @ = &, — 30,/2 and ® = y; — ¢, with respect
to f, and ¢,. Here £, and #, are regarded each as functions of £, 5, 8y, and ¢, and the derivatives are evaluated with the three
other variables held constant.

We have _ _
_(32_;’!‘:)9: Ta3 1'1.‘:
= tan ! (3‘//"7 — PZ uz )gz ? fi = [(% = Pa qu)—Bﬁx + (% — Po ”Uy)—gay]u- H (Cl)
S oy
3/2 — iy Bx a1 202 2
ny=tan"! (32 = e ey Er=1G —u )05, + G —u, )02 (C2)

(3/2 =~ u, 0,

Here p, is the parameter p evaluated at the emission point (py = ¥ if eg > Iy, and py = 1 ifay < 39%). Note that the direction (£, n)
to the direction of the group velocity vector which at the RER is in the p = 1 regime by definition.

We thus have n,, &;, 0y, ¢hg as functions of 8y, 8g,. tigs, Uy, Also, since u,r, t,r, 8., and 8, are functions of the same variables, #,
and ¢ can also be regarded as functions of f,, 8, g, and u;,.

Let
Ugy 0y
Hpy ' &r
P=| F= . C3
o, and 8, (C3)
eﬂy d"ﬂ
When the initial values P are incremented by an amount 8P, F changes by of an amount §F, given by
oF
2 5P =6F - C4
3p 9P =9F ; (C4)
here the ijth companent of dF/2P is given by F,/6P,.
Define
0 0
0
oF, = y and oF, = (C3)
1 0
0 1
with corresponding 4P, and 6P, such that (§F/0P) - 6P, = 6F, and (8F/dF) - §P, = 8F,. Thus,
ary-! AF\ !
P =(— * P, =|— - 5 2 .
oP, (EP) OF and aP, (BP) oF, (C6)
From these definitions we obtain
My iy
——— (n =—(P)- 6P-; . . C7
aqbﬂ Bo.nrir a’P ( ) - ( )
on; aF\ !
=P (P)( 3 P) oF,, (C8)
6&; d¢, oF\ !
L] =X P(—) - 3F,
690 LN TR or ® oP ' (©3)
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Using the notation

oo _|oxdy_ dxdy
[‘\’y]"'"[as 5 as]’

after inverting the matrix 8F/@P and performing the dot products in equation {C8) and (C9) we find

a&; - L€r, Pologs, 00,11 Eiliny. wuz T [E7s Eung. g, LTrs Pologe, v [ha, Edog,.n

=i, & B, ¢ )={ bz. Doy Dy Uil 0z, 4Oy oz Bue or.foe (C10)
o8 £r0 e 0 [’?I’ éf]uu;. uu,«[el)! ¢U]ﬂu;, oy [HU’ ‘:bﬂ]ﬂux. Ay

an . [, € lue. wol s Bodaa.. a0,  [His 15 dug,, oLl rs ol 0 [ B0lose, 00y

i L (]] \ C_' . B . ) ={ Qxa Uiy = Nz, Dy Dy HDx Ox UGy + Dx. P . (CII)
dihyg I =070 $o Utrs Eplugs, uur[au: $olay., Doy [a: $olens, toy

To proceed further we take advantage of the problem’s symmetry,

0,
— and
560 Eroir ﬁ'dlo s

are to be evaluated at & = 30,/2 and 5; = ¢i,. The result must be independent of ¢,. We may theréfore evaluate the derivatives at a
specific value of ¢, but expect the result to hold for all ¢,. In particular, we let ¢ = 0. We also evaluate the derivatives at the
values of &, i, 8y, and ¢ such that & = 36y/2and ij; = ¢. This implies ug, = g, = 1, =1y, = 0.

Many of the derivatives needed to evaluate equations (C10) and (C11) vanish because of the symmetry of the problem. They
vanish for three general reasons: _

1. The azimuthal variables (,, 17, ¢) are zero at the point where the derivatives are to. be evaluated, and remain zero as long as
the ray stays in the ¢y = 0 plane, which it does if n, o, and 8, are zero. Thus derivatives of the azimuthal variables with respect to
tg, and fy, are zero:

O

=L e, (C12)

2. The colatitude variables (8, &;, and &) will all be changed by incrementing the starting location of the ray out of the ¢g = 0
plane (i.e. by incremnenting 86,,). But because of the azimuthal symmetry the change in the colatitude variable will be the same for a
positive increment in 68, as it is for a negative increment in 66,. Thus, evaluated at £, = 0 the following must go to zero:

o, 9 _ 9&;

660:‘:WM=W0:=0. (C13)
3. If X is one of the dependent variables that is a function of P, then
ax I ¢
LT R — o é‘n_m, 0o, Boy. vy

Since the derivatives of y, i1, &, and &y are all zero or finite, then evaluated at 8, = 0,

. P
06 _ 06y _ Om _ ony _ 0. . (C14)

Qug, dug, g,  Bgy

These zero derivatives allow substantial simplification of equations (C10) and (C11):

8E, _ (66; 4 /?&) (C15)

f=300j2m=do=0 000y  \00o, dtin,] Dut,
- o O _ (aﬂf an; /a‘f’n dny ) (C16)
E=30n{2, ni=do=0 680: aeﬂx 6801‘ an.l.ﬂx aBOx a"&ﬂx
We have calculated the derivatives on the right-hand side of equations (C15) and (C16).
Using equation {C1) and (C3) (evaluated at £; = 38,/2 and 5, = ¢,), we find

of 3. 84 by g _ 1. Odg

o0& .
6_02 (115, €, B0, o)

Fe]
5—;’5{; (152 €52 Bos o)

. w2
30y, 2°  duy, 2 By, Op, 3y, Op " dne. 38,
Using Appendix B and equation (B2), we obtain (if p, = 1): '

¢, QJ_f 3 (u,r — o Yy r — ) — (yr — 3/, — 1)
LT - ) C18
88o, oy 1\2 Hys |+ iy {uyr — u Yy —ul) — vy, — 5/2) (C18)

o, 28, {(3 5 Tty — ity — u_) — (4, — 32, — 1) ﬂ?
e bt C
Butg, 36, 1\2 s ) 2t {1ty — vy Yty — u) = 10, aty, — 5/2) ’ {C19)

(C17)
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oy 1
gy _ 1 C20)
. Oy, (
oy -1 (tip = ui Mo —ul)
= — . . C21
Mige Opetiyu.. |:“xf {ur—3/2) (€21)
In the above, u, = 3.581 and u_ = 0.419.
Combining equations (C15}-(C21) yields for the low-frequency limit (, ,—u_):
' 90 80 80 0| u,
— L =427, Cc22
‘ 08y By By Oy  2u_ €22
In the high-frequency regime (py = 1)3@/86; -+ —3/2 and 8d/d¢y— — 1 50 that
20 o0 90 ad| .
— 1 =150. 2
88, By Bepg 88, (C23)

APPENDIX D
CALCULATION OF VARIATION IN ¥ DUE TO FINITE WIDTH OF BEAMING ANGLE A#,

We wish to estimate the change in polarization position angle due to the finite angle Af, over which the radiation is emitted, For
simplicity we restrict oursalves to 8 = 0. A ray which is emitted along the field and is observed at § = 0 satisfies equations (58} and
(59). We wish to calculate the change in position Aflg,, and Afly, and the change in initial direction AZ;, and A#, such that a ray
emitted at an angle from the field of A8, will be observed at a pulse longitude of § = 0, i.e. such that the change in final direction with
respect to the magnetic axis (AL, Aw,)is zero.

Let .
AB; = ABL + A8, . (D1)
From the geometry Afl, . = sin &{Ai; — A¢ghy)and AB,,,, = A&} — 3A8,,/2. Assume A, and Ab,, are specified. Then (when fy,, = 0),
Ay, Al
= Zlox 2
Al = Al + = ABQJ, and Ay, Sin & + By (D2)

It is convenient to introduce the following notation:

_ {0z _ [ fox " _{nr _ (b _ {Aby/sin & _ 1/, 0
Uo_(“t)y) 00_(901) bi= (Cf) Df_(ff) Gf_(ey) 69!’“(‘53@ ¢= 0 3/ (D3)

From these definitions equation {D2) becomes 6D, = §8, + G - §8,. We also note that the functional dependence of #5 and D, as
discussed in Appendix Cis fg = 04{Uy, D)) and D, = DUy, 0y). Thus,

oD 6D,
D, =L :
5D, FT7 5UU+800 a8, , _ (D4)
90y -, 98, _
590 BUU 6U[} +o5 apf " d i (DS)
8D, aD; 2o\ o, [3D; a6,
5D = (BUD+ a0, 20,) %Y ™| a0, ap,] Pt | (DE)
Since we are interested in displacements in 8D, 58, (and 5Uy) which yield zero for 6D, § Uy may be solved for
aD, oD, af, |~ eD, 28
U= —| 982 8Os Mo | 68 Do) 5py
80s [&Uu+ 20, BUD] [aau T (B7)
so that 68, becomes
88, (oD, @D, ab,\"'[aD, 28,\ = 6,
AL L2 (L2 - 8D
08y = [EUD (auﬁ" 30, 8U,) \ @0, oD, +6D i- (D8)
Substitution of equations {D2) and (D3) into (D8} and (DY) yields
of ab D, 86,\"'/éD, a8 ae
0 = (T Y 2. (=L, L0 Zrre —21.
p==6) [ FI7A (BU0+690 o0, \z8, ap,) T ap,| o0 (D9)

2D, 8D, 30,\"(aD, 38
= (] — Tl ket T U el i A DT
0o = —I=G) (aU0 a6, aU.,) (aoo BD;) o8, (D19)
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Finally we have
2,

A0 =30,

U, + =L 56,
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28,
DIl
2, (D11)

Substitution of equations (D) and (D10) into equation (D11), yields A8, and A8,  in terms of A8, and Af,_ which is the desired
result. Calculation of 8D /28U, and 8D /&0, was done in Appendix C (eqs. [C12]-[C14] and [C18]-[C21]).

Other derivatives that are needed are

%=& 65'”=O’ -%___0’ ,a.gaJ.:H'f , Hu,r — Dou,,p/0uy, ; D12)
0o, Boy 8o, 000+ 88y, Op, 5(uyr — Yy, — u)
0sp _ 0, 005 _ 0, By _ By _ ¥ —(uyy — Vou, o /Ouy, 2 . (D13)
dug, Bug, Oug, fug, {uyp —u Yo p—n_) 3
Above _
du,, Sty pluyy — s )iy —u)
_ Sugy B[y — o Yatyp — ul) — g (u,r — 5/2)]°
From the definitions of {; and #, in Appendix C we have
3os Boc _, o Bbox _ .
ag, B Bug, Bug,
I : o (D14)
04, _2 Gflg, -0 80, - 90q, _2 .
g 37 an, Dt fug, 3 7

Note that all of equations (D12)~(D14) were evaluated with iy, = ugy, = 8y, = 5, = 5, = 0. Evaluation of equation (D11) using

equations (D9}-{D10), and (D12) yields an x-component of A8, of

B fu,—1
Ab = =L——Ap, .
Bxs 0o, ( Uyt ) Ous

(D15)

Use of equations (60) and (63) in the text thén vield the desired A, equation (64).
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